Key role of nuclear factor-κB in the cellular pharmacokinetics of adriamycin in MCF-7/Adr cells: the potential mechanism for synergy with 20(S)-ginsenoside Rh2.

نویسندگان

  • Jingwei Zhang
  • Meng Lu
  • Fang Zhou
  • Haopeng Sun
  • Gang Hao
  • Xiaolan Wu
  • Guangji Wang
چکیده

We have previously demonstrated that ginsenoside 20(S)-Rh2 is a potent ATP-binding cassette (ABC) B1 inhibitor and explored the cellular pharmacokinetic mechanisms for its synergistic effect on the cytotoxicity of adriamycin. The present studies were conducted to elucidate the key factors that influenced ABCB1 expression, which could further alter adriamycin cellular pharmacokinetics. Meanwhile, the influence of 20(S)-Rh2 on the above factors was revealed for explaining its synergistic effect from the view of ABCB1 expression. The results indicated that 20(S)-Rh2 inhibited adriamycin-induced ABCB1 expression in MCF-7/Adr cells. Subsequent analyses indicated that 20(S)-Rh2 markedly inhibited adriamycin-induced activation of the mitogen-activated protein kinase (MAPK)/nuclear factor (NF)-κB pathway, NF-κB translocation to the nucleus, and NF-κB binding activity. Furthermore, 20(S)-Rh2 repressed the Adriamycin-enhanced ability of NF-κB to bind to the human multidrug resistance (MDR1) promoter, and MAPK/NF-κB inhibitors and NF-κB small interfering RNA reversed the adriamycin-induced expression of ABCB1. Moreover, the cellular pharmacokinetics of adriamycin was also significantly altered by inhibiting NF-κB. In conclusion, the MAPK/NF-κB pathway mediates adriamycin-induced ABCB1 expression and subsequently alters the cellular pharmacokinetics of adriamycin. It was speculated that 20(S)-Rh2 acted on this pathway to lower adriamycin-induced ABCB1 expression in MCF-7/Adr cells, which provided mechanism-based support to the development of 20(S)-Rh2 as a MDR reversal agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Key Role of Nf-κB in the Cellular Pharmacokinetics of Adriamycin in MCF-7/Adr Cells: The Potential Mechanism for Synergy with 20(S)-Ginsenoside Rh2

We have previously demonstrated that ginsenoside 20(S)-Rh2 is a potent ABCB1 inhibitor and explored the cellular pharmacokinetic mechanisms for its synergistic effect on the cytotoxicity of adriamycin. The present studies were conducted to elucidate the key factors that influenced ABCB1 expression which could further alter adriamycin cellular pharmacokinetics. Meanwhile, the influence of 20(S)-...

متن کامل

Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1

The purpose of present study was to investigate the effect of dioscin on activity of adriamycin (ADR) in ADR-sensitive (MCF-7) and ADR-resistant (MCF-7/ADR) human breast cancer cells and to clarify the molecular mechanisms involved. Antiproliferation effect of ADR was enhanced by dioscin in MCF-7 and MCF-7/ADR cells. Dioscin significantly inhibited MDR1 mRNA and protein expression and MDR1 prom...

متن کامل

Induction of apoptosis and reversal of permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM by ginsenoside Rh2.

Multidrug resistance is a phenomenon that cancer cells develop a cross-resistant phenotype against several unrelated drugs, and permeability glycoprotein derived from the overexpression of multidrug resistance gene 1 has been taken as the most significant cause of multidrug resistance. In the present study, ginsenoside Rh2 was used to reverse permeability glycoprotein-mediated multidrug resista...

متن کامل

Monascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway

Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...

متن کامل

Inhibition of Akt phosphorylation attenuates resistance to TNF-α cytotoxic effects in MCF-7 cells, but not in their doxorubicin resistant derivatives

Objective(s): Acquisition of TNF-α resistance plays role in the onset and growth of malignant tumors. Previous studies have demonstrated that MCF-7 cell line and its doxorubicin resistant variant MCF-7/Adr are resistant against the cytotoxic effects of TNF-α. In this study, we investigated the role of Akt activation in resistance of MCF-7 and MCF-7/Adr against TNF-α cytotoxicity. Materials and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 40 10  شماره 

صفحات  -

تاریخ انتشار 2012